Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.

نویسندگان

  • D E Cohen
  • G M Thurston
  • R A Chamberlin
  • G B Benedek
  • M C Carey
چکیده

We employed quasielastic and static light scattering to measure apparent values of the mean hydrodynamic radii (Rh)app, molecular weights (Mapp), and radii of gyration (Rg)app in solutions containing mixed micelles composed of bile salts (cholate and taurochenodeoxycholate, both cholanoyl derivatives) and the glycoacyl chain detergent, octyl glucoside, with egg yolk phosphatidylcholine (EYPC) as functions of total lipid concentration (0.1-10 g/dL), EYPC/detergent molar ratio (0-1.2), and ionic strength (0.15-0.4 M NaCl) at 20 degreesC and 1 atm. As the mixed micellar phase boundaries were approached by dilution, (Rh)app, Mapp, and (Rg)app values increased markedly by up to 20-fold. For each micellar system, the scaling ratios (Rh)app/Mapp1/2 and (Rg)app/(Rh)app remained essentially constant at 0.018 nm/(g/mol)1/2 and 1.5 (dimensionless), respectively, despite large variations in total lipid concentration, detergent molecular species, and ionic strength. Refined data analysis is inconsistent with a flat "mixed-disc" model for bile salt-EYPC micelles [Mazer, N. A., Benedek, G. B., and Carey, M. C. (1980) Biochemistry 19, 601] and octyl glucoside-EYPC micelles principally because the numerical value of (Rh)app/Mapp1/2 corresponds to a hypothetical disk thickness of approximately 1 nm, which is 4-fold smaller than the bimolecular width of EYPC molecules, and for a disk, (Rg)app/(Rh)app ratios should be close to 1 at low total lipid concentrations. Assuming disc-shaped micelles, we show that intermicellar excluded volume interactions would have only a minor effect on Mapp and cannot account for the unrealistic disk thickness. Instead, locally cylindrical, semiflexible wormlike micelles of diameter d = 4 nm and persistence length xip = 17 nm in solution are compatible with the observed (Rh)app/Mapp1/2 and (Rg)app/(Rh)app values when intermicellar excluded-volume interactions are considered. With EYPC/taurochenodeoxycholate = 0.6 and EYPC/cholate = 1.0 in 0.15 M NaCl, independent micelles grow upon dilution and use of the second virial coefficient [Egelhaaf, S. U., and Schurtenberger, P. (1994) J. Phys. Chem. 98, 8560] is adequate for estimating micellar weights. The systems EYPC/cholate = 1.0 in 0.4 M NaCl, EYPC/cholate = 1.2 in 0.15 M NaCl, and EYPC/octyl glucoside = 0.13 in 0.15 M NaCl all form highly overlapping, semidilute polymer solutions, which mimic the observed scaling ratios. In such semidilute systems, use of the second virial coefficient alone to account for intermicellar interactions is inadequate for estimating micellar weights. The results of the present study, in combination with locations of known phase boundaries of the ternary bile salt-EYPC-water phase diagram at high dilution, suggest that elongation, as well as entanglement of wormlike mixed micelles may occur at concentrations approaching the micellar phase limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids.

We report a new route for forming reverse wormlike micelles (i.e., long, flexible micellar chains) in nonpolar organic liquids such as cyclohexane and n-decane. This route involves the addition of a bile salt (e.g., sodium deoxycholate) in trace amounts to solutions of the phospholipid lecithin. Previous recipes for reverse wormlike micelles have usually required the addition of water to induce...

متن کامل

Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we sh...

متن کامل

Intraduodenal conjugated bile salts exert negative feedback control on gall bladder emptying in the fasting state without affecting cholecystokinin release or antroduodenal motility.

BACKGROUND Intraduodenal bile salts exert negative feedback control on postprandial gall bladder emptying. AIMS We wished to examine whether a similar control mechanism occurs in the fasting state. METHODS Intraduodenal bile salt depletion was achieved by 12 g of cholestyramine. Thereafter, in study A (seven subjects), the effects on gall bladder volume (by ultrasound) and antroduodenal mot...

متن کامل

BILIARY TRACT Intraduodenal conjugated bile salts exert negative feedback control on gall bladder emptying in the fasting state without affecting cholecystokinin release or antroduodenal motility

Background: Intraduodenal bile salts exert negative feedback control on postprandial gall bladder emptying. Aims: We wished to examine whether a similar control mechanism occurs in the fasting state. Methods: Intraduodenal bile salt depletion was achieved by 12 g of cholestyramine. Thereafter, in study A (seven subjects), the effects on gall bladder volume (by ultrasound) and antroduodenal moti...

متن کامل

Head group-independent interaction of phospholipids with bile salts. A fluorescence and EPR study.

Bile salts are essential for phospholipid secretion into the bile. To study the relevance of the structure of phospholipids for their interaction with bile salts, we used spin-labeled or fluorescent phospholipid analogues of different head groups and acyl chain length. Those analogues form micelles in aqueous suspension. Their solubilization by bile salts resulting in the formation of mixed mic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 37 42  شماره 

صفحات  -

تاریخ انتشار 1998